

Root at the LCD

6/13/2001

M. I wasaki Univ. of Oregon

North American Linear Collider Detector Group (LCD) has constructed a simulation facility based on Root

So far we only support Linux and SunOS (developing Windows)

Event generation at LCD Root

PYTHIA (TPYTHIA: supported by ROOT)

Output: ROOT or stdHEP (HEPEVT common)

ROOT can go through FastMC

stdHEP can go through FullMC (GLSMO) & FastMC

Or can be directly linked to FastMC

Detector Simulation at LCD Root

We use 2 kinds of detector simulations

- Fast simulation For physics studies
- Full simulation For detector studies

Fast simulation Smear particle position/energy and IP position

Output Root or is directly linked to Event Analysis

```
Full simulation (GISMO)

make digitized detector outputs (SIO binary)
```

Full recon make tracks and clusters

Output Root or is directly linked to Event Analysis

Detector Simulation at LCD Root

LCD Group considering 3 kinds of Detector designs

Silicon, Large, and Precise

→ Different Detector sizes, materials, and Calorimeter Configurations....

... We prepare 3 kinds of
Detector geometry files
Detector resolution files (for smearing)
Some/all of these parameters can also be changed
at user analysis level

Event Analysis at LCD Root

We have several useful analysis tools for Linear Collider experiments

- Jet Finder ... 3 kinds of algorithms
- Thrust Finder
- Particle extrapolator
- Topological Vertexing

... translated from SLD ZVTOP

Jet Finder

3 kinds of algorithms .. Jade, Jade E, and Durham

Comparison of original Fortran Jet Finder and ours

Thrust Finder

tt events

ττ events

Topological vertex finder Translated from SLD ZVTOP Reconstruct secondary vertices in a jet

.. Find points of high overlap tracks

#Vertices reconstructed

Using the reconstructed vertices, we can do

P_T corrected Vertex Mass (GeV)

Vertex Mass

1) Heavy-flavor tagging

2) Charge separation

For example..

Analysis example with b-tag:

Reconstruction of t-quark mass in tt→ 6jets event

LCD Root Event Display

FastMC ($e^+e^- \rightarrow ZH$)

LCD Root Event Display

FullMC ($e^+e^- \rightarrow tt$)

Event structure at LCD Root

Event

Event Header event number ...

Beam parameters polarization, IP position ...

Generator level particle information McParticles

Raw data (Full) VXDHits TrackerHits CalHits

Reconstructed Data Tracks Clusters

Based on TClonesArray

Summary

- LCD group has constructed simulation/analysis tools for the future Linear Collider experiments
- The simulation/analysis tools based on ROOT
 - → work well!

- LCD Root handles several I/O
 - ... Some of them require STL (can be worked ROOT V3.00 or later)
- •There is a LCD Root tutorial page! (Under construction)

URL:

http://www-sldnt.slac.stanford.edu/nld/New/Docs/LCD_Root/root.htm

Future Plan

- GEANT4
- GUI
- Support Windows

We are happy to collaborate with other exp. groups to develop analysis tools!!

(Currently LCD Root is maintained by 2 people ...)